
7. TRENDS AND AGING

7.1 Overview 1987-1993. Table 6.8, summarizing that example, is
repeated here for convenience as Table 7.1.

The material in this chapter is needed only if the model-
validation tools in Section 6.2 or 6.3 have discovered
the existence of a trend in an initiating-event rate A or
in a probability p. This chapter is more advanced than
Sections 6.2 and 6.3, because it actually models the
trend.

Such a trend might be in terms of calendar time, or in
terms of system age. Section 7.2 considers trends in A
when the events are grouped into bins, such as counts of
events in calendar years. Section 7.3 briefly considers
trends in A when the individual event times are used as
the data. Section 7.4 considers trends in p. These
sections all model 1 or p as a parametric function of
time. The final section of this chapter, Section 7.5, ties
together some of the methods that have been presented
in different specific applications in this chapter and in
Chapter 6.

Modeling a trend normally involves some rather de-
tailed mathernatics. A Bayesian analysis must construct
a sample from the posterior distribution, and a
frequentist analysis must calculate the fitting equations
and estimate the uncertainties in any unknown parame-
ters. The viewpoint taken here is that the computer
software will do those calculations. This chapter avoids
any equations that the user will not need. Instead, this
chapter presents the various approaches that are possi-
ble, and shows how to interpret the computer output
and translate it, if necessary, into the quantities needed
for probabilistic risk assessment (PRA).

It turns out that the Bayesian analysis is no harder to
present than the frequentist analysis. Therefore, it is
given first in Chapter 7.

Some of this material is drawn from an INEEL report
by Atwood (1995), and indirectly from more advanced
sources. The INEEL report gives additional examples,
including definitions of somewhat more complex
models and discussion of pitfalls in constructing such
models.

7.2 Binned Poisson Data

7.2.1 Examples

Two examples are given here. The first example was
introduced as Example 6.5, unplanned demands for the
high pressure coolant injection (HPCI) system during

Table 7.1 HPCI demands and reactor-critical-
years (from Example 6.5).

Calendar HPCI Reactor-critical-
year demands years

1987 16 14.63
1988 10 14.15
1989 7 15.75
1990 13 17.77
1991 9 17.11
1992 6 17.19
1993 2 17.34

The second example, Example 7.1, groups events not
by year of occurrence, but by age of the reactor.

Example 7.1 Thermal-fatigue leak events, by
plant age.

Thermal-fatigue leaks in PWR stainless-steel
primary-coolant-system piping are tabulated by
Shah et al. (1998).

Age (years Number Reactor-
from Initial of leaks years
criticality)

0.0-5.0 2 1052
5.0-10.0 1 982.5
10.0-15.0 4 756.9
15.0-20.0 4 442.4
20.0 -25.0 2 230.9
25.0 -30.0 0 43.9

The PWR plants considered here include all the
western-designed PWRs, 217 reactors in all, from
initial criticality until May 31, 1998, or until decom-
missioning. For details, see Shah et al. 1998. Plant
age is summarized in 5-year bins, shown in the first
column of the table. Other bins, such as 1-year bins
or 10-year bins, could have been constructed. For
each thermal-fatigue leak event, the age of the plant
at the time of the event was calculated. The number
of such events for each age bin is given in the
second column of the table.
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To count the reactor-years for each age, the number
of reactors that experienced 1 year, 2 years, etc.
were totaled. For example, Three Mile Island 2 had
its initial criticality in December 1978, and was shut
down in March 1979. It was counted as contributing
1/4 of a reactor-year (= 3 months) to the first bin (age
0.0 - 5.0). At the other extreme, Yankee Rowe
operated from July 1961 to September 1991. It was
counted as contributing 5 reactor-years in each of
the six age bins. These counts of reactor-years are
totaled in the third column of the table in Example
7.1.

The two examples have identical form. Each bin
corresponds to a time, which can be coded numerically.
This time will be called clock time here. In Example
6.5, the clock time is calendar time. Each bin corre-
sponds to a year, and could run from 1987 through
1993, or from 87 to 93, or from 0 to 6, or even -3 to
+3. Any coding works, as long as it is numerical.
Denote the coded clock time for bin i by ti. The units of
t, are calendar years, and the different possible codes
correspond to different definitions of year 0. In Exam-
ple 7. 1, clock time is age. The bins are identified most
simply by the midpoints of the age bins: 2.5, 7.5, 12.5,
etc. The units of t, are age in years. They could also be
identified by other numerical codes, corresponding to
the smallest age in the bin or the largest age in the bin
or some other code.

In both examples, each bin has a clock time, an event
count, and an exposure time. When considering possi-
ble trends, we must distinguish between clock time and
exposure time, paying attention to a distinction that was
not so important in the earlier chapters. In this chapter
the symbols t,, x,, and si denote the coded clock time,
the event count, and the exposure time, respectively,
for bin i. Suppose that A has units of events per reactor-
year. Then the units of exposure time must be reactor-
years. During any short time interval from t to t + At,
the exposure time As equals At times the number of
reactors operating during the time period.

1. The probability that an event will occur in any
specified interval with short exposure time ap-
proaches zero as the exposure time approaches
zero.

2. Exactly simultaneous events do not occur.
3. Occurrences of events in disjoint time periods are

statistically independent.

This model is a nonhomogeneous Poisson process
(NHPP). The model in Section 2.2 is a homogeneous
Poisson process (HPP), a special case of the model
given here. Consider now a single operating system, so
that exposure time equals elapsed clock time. In the
HPP, the probability of an event in the time interval (t,
t + At) is approximately lAt. In the NHPP, A is not
constant, but is a function of t. The function A(t) is
called the time-dependent event occurrence rate. Some
authors call it the Poisson intensity function. The
probability of an event in the time interval (t, t + At) is
approximately A(t)At. In a longer interval, from a to b,
the random number of events is Poisson with mean

b
Ia A()dt .

Four special cases are mentioned here.

1. The HPP has 1(t) = a constant > 0.
2. The loglinear model has In2(t) = a + bt, or equiva-

lently, 2(t) = Aeb, with A = en. This is also called
the exponential event rate model. Here, a and b
are unknown parameters, which must be estimated
from the data.

3. The Weibull process, or power-law event rate
model has 2(t) = (blc)(t/c)- ', or equivalently 2(t)
= At"-. Both .b and c are unknown parameters
(with b > 0, c > 0), to be estimated from the data.
This model can be rewritten as

ln,4(t) = In(A) + (b- I)ln(t),

To avoid redundancy, this section will use only the
Example 6.5 for illustrating the methods, although
either example could be used.

7.2.2 Model

7.2±1 General Model

The assumed model is an extension of the model for a
Poisson process given in Section 2.2.2. The following
assumptions are made. These are a simplification of the
slightly weaker assumptions given by Thompson
(1981):

which is a linear function of In(t). Several param-
eterizations are found in the literature.

4. An extended power-law process has 2(t) = At"-I
+ 2o, for o t 0. The Swedish I-Book (P6rn et al.
1994) uses a Bayesian analysis of this model. The
method is developed by Porn (1990) and briefly
explained by P6m et al. (1993) and Lehtinen et al.
(1997).

An occurrence rate must be nonnegative. Note that all
four of these models have this requirement built in -
they force A(t) to be positive for all t. The number of
possible models is infinite, because any nonnegative
function of t gives a different model.
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In the first bulleted case, 2(t) is constant, and in the
other three cases A(t) is monotone in t, either increasing
forever or decreasing forever. An event frequency has
a bathtub shape if A(t) is decreasing when t is small,
then roughly constant, and finally increasing when t is
large. Models of a bathtub shape require more parame-
ters. Therefore, bathtub curves are commonly used to
describe models qualitatively, but have not been imple-
mented in widely-used quantitative models.

As noted, the loglinear model satisfies

InA(t) = ln(A) + bt

and the power-law model satisfies

-2

-2 -1 0 1 2 3
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Figure 7.1 Loglinear model, InAe) = a + bt, for
a = 0.1 and three possible values of b. The vertical
axis shows InA(t.

InA(t) = ln(A) + (b- 1)u

where u = ln(t). Therefore, the power-law model can be
expressed as a loglinear model in ln(t), as long as t stays
away from zero. Therefore, the illustrations of this
section will use the loglinear model. If they so desire,
readers can translate this material into the power-law
model by redefining b and replacing t with u E ln(t).
The extended power-law model will not be considered
further here.

When multiple systems are observed simultaneously,
the total number of events is again a Poisson random
variable, and the mean count is the sum of the means
for the individual systems. This fact will be used to
account for the exposure times in the examples.

25
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Figure 7.2 Same model as
showing A(4) instead of InA(0).
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in previous figure,

The loglinear and simple power-law models given
above are now discussed in detail.

7.2.2.2 Loglinear Model

An occurrence rate must have units of events per
exposure time unit. Therefore, in the loglinear model,
A has units of events per exposure time unit, and b has
the inverse units of the time axis. In Example 6.5, A
has units 1/reactor-critical-year, and b has units
I/calendar-year. In Example 7.1, A has units 1/reactor-
calendar-year, and b has units I/year-of-age.

The loglinear model is illustrated here, for a = 0.1
and b = +1.0, 0.0, and -1.0. Figure 7.1 shows InA(0
as a function of t, and Figure 7.2 shows A(t as a
function of t

The interpretation of b is the slope of InA(t). If b is
negative, InA(t) is decreasing, and therefore the event
occurrence rate A(t) is also decreasing. If b is positive,
2(t) is increasing, and if b = 0, 2(t) is constant. Tests
for trend will be formulated as tests of whether b = 0.

The interpretation of a is the intercept of InA(t), that is,
the value of ln.(t) at t = 0. The meaning of a depends
on how time is coded. In Example 6.5, with HPCI
demands, if t runs from 1997 to 2003, the value t = 0
corresponds to about 2000 years ago, and a is the value
of In2(t) at that time. This is an enormous extrapola-
tion, and a can be estimated only with great uncertainty.
Coding t as running from 97 to 103 involves less
extrapolation, because now t = 0 corresponds to the
year 1900, only some 100 years before the data. Other
possibilities are to let t run from 0 to 6, or from -3 to
+3. These coding schemes involve no extrapolation at
all, because 0 is included in the range of the observed
data.

In theory, it makes no difference which coding system
is used. The different codings for t and the different
meanings of a compensate for each other. For any
particular time, such as 1996 or 2001, the different
coding systems give exactly the same estimate of A at
that time. In practice, however, no computed value is
exact, and roundoff errors can accumulate. Use of large
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extrapolations can introduce large errors. Well-pro-
grammed software should protect against this problem
automatically, no matter how the times are entered.
Nevertheless, the analyst can do no harm by choosing
a coding system with zero reasonably close to the data.

7.2.2.3 Power-Law Model

In both parameterizations given above for the power-
law model, b is a unitless shape parameter. As will be
seen below, b - 1 is the slope of InA(t) as a function of
In(t). In the first parameterization, c is a scale parame-
ter with units of t. It does not have a simple interpreta-
tion. In the second parameterization, A has strange
units, but a simple interpretation as the numerical value
of A(t) at t = I.

Figures 7.3 and 7.4 illustrate the power-law model for
A = 1.0, and b= 0.5, 1.0,2.0, and 3.0.

0 ----- b0.5
-2 _ _ _ _

-4
- -

-- - -

In Figure 7.3, the parameter b - I is the slope of Inl(t)
as a function of In(t). In Figure 7.4, b is a shape param-
eter, defining the shape of the curve. In either figure,
the interpretation of A is the numerical value of 2(t) at
t= 1.

This model requires t > 0, so a coding system should be
chosen so that all the observed times correspond to
nonnegative values of t. Also, if the occurrence rate is
decreasing, the modeled occurrence rate becomes
infinite at t = 0.

The loglinear and power-law models are widely used,
but they are chosen for their simplicity and conve-
nience, not their theoretical validity. Any model must
be checked for goodness of fit. Moreover, no model
should be extrapolated far into the future - even if
some convenient algebraic formula fits a trend well in
the past, that is no guarantee that the data will continue
to follow that formula in the future.

7.2.3 Bayesian Estimation with
Loglinear Model

The first few paragraphs here describe the big picture in
very general terms. Following that, the section carries
out the Bayesian estimation when the occurrence rate
satisfies the equation InA(t) = a + bt.

A large-sample approximation is applicable. As the
observed event counts become large, the form of the
likelihood function approaches the form of a normal
density in the unknown parameters. That is, if the
likelihood function were treated as a probability den-
sity, it would be approximately a normal density. This
is a general fact for large data sets that is exploited by
advanced statistics texts, such as Cox and Hinkley
(1974, Section 10.6). Therefore, with large data sets
the conjugate prior is normal: if the unknown parame-
ters are given a normal prior distribution, the posterior
will be approximately normal, with very good approxi-
mation as the data set becomes large. The corresponds
ing noninformative prior for a and b is the limiting
case as the variance approaches infinity, which is a
constant density.

For the work here, it will be assumed that a computer
program produces a sample from the posterior distribu-
tion. The theory sketched above then leads us to the
conclusion that the posterior distributions not only
appear normal, they really are normal, or very close to
normal.

I

-5 -4 -3 -2 -1 0 1
In t GCUOW4

Figure 7.3 Power-law model, showing InAOt as a
linear function of In(J, with A = 1.0 and several
values of b.

I
t GC=O03

Figure 7.4 Same model as in previous figure, with
XQ) shown as function of t.
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Now let us move to the specific case at hand, with
InA(t) = a + bt, and with a and b as the unknown
parameters. For this case it happens that the above
normal approximation is valid when the event counts
are only moderate in size.

The bins must be small enough that A(t) is approxi-
mately a straight line function within each bin, not
strongly curved within the bin. Denote the midpoint of
the ith bin by t,. Then the expected number of events in
the bin is well approximated by A(tdsi, where s, is the
exposure time for the bin. The method is to fit the
observed Poisson counts to I(t,)s1, while assuming that
A(t,) has the form a + bti.

A convenient software package is BUGS (1995),
Rayesian inference Using gibbs Sampling. The Win-
dows version is called WinBUGS. It is also described
in Section 8.2.3, and documented by Spiegelhalter et al.
(1995). It is currently available for free download at

httpl//www.mrc-bsu.cam.ac.uk/bugsl.

WinBUGS is a high-powered research tool, capable of
analyzing very complex models. It does this by not
trying to obtain a simple random sample from the
posterior distribution. Instead, it tries for something
more restricted, a Markov chain Monte Carlo
(MCMC) model. Here a chain, or sequence, of
numbers is generated, starting at an arbitrary point but
eventually sampling from the posterior distribution.
The values in the sequence are not independent, but this
does not matter. After the initial value has been essen-
tially forgotten, the remaining values form a sample
from the posterior distribution. They can be used to
approximate the moments, percentiles, and shape of the
distribution.

WinBUGS can be used either with a graphical descrip-
tion of the model, called a "directed graph," or with a
text script. Example 6.5 will be analyzed using
WinBUGS here, assuming a loglinear model.

With the data of Example 6.5 (Table 7.1), BUGS was
used to model A(,) = exp(a + bO), for i from 1 to 7.
Then X(i) was modeled as having a Poisson distribu-
tion with mean A<J) = A(i)xs(J). Finally, a and b were
given very diffuse prior normal distributions. Figure
7.5 is the logical diagram showing the relations.

In Figure 7.5, deterministic relations are shown by
dashed arrows, and stochastic relations (random
number generation) are shown by solid arrows. The
parts of the model that depend on i are enclosed in
the box.

Figure 7.5 Directed graph for analysis of Poisson
trend in Example 6.5.

Figure 7.6 shows the BUGS script that was used.
Many users find the text script easier to manipulate
than the graph.

One idiosyncrasy of BUGS is that it parameterizes
the normal distribution in temvs of the precision T=

lid. The reasons are explained in Section 6.6.12.1.
Therefore, a precision of 0.0001 in the script corre-
sponds to a standard deviation of 100. That gives a
very diffuse distribution.

model

for (i in 1:N) (
lambda[il <- exp(a + i*b)
mu[i] <- lambda[i]*s[iJ
x[iJ - dpois(mu[i])
-

a - dnorm(O.0, 0.0001)
b - dnorm(0.0, 0.0001)

Figure 7.6 BUGS script for analyzing data of
Example 6.6.

The script was executed with four separate starting
values of a and b, generating four chains of values,
each 10,000 elements long. The first 200 elements
of each chain were discarded, and the remaining
39,200 elements were used to estimate the posterior
distributions. Table 7.2 summarizes the posterior
distributions for a and b. When interpreting these
summaries, be aware that a and b are not indepen-
dently distributed.

Even though the numbers are not necessarily accu-
rate to three places, the table shows that the mean
and median are nearly equal in each case, and the
5th and 95th percentiles are approximately 1.645
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standard deviations from the mean. That is, the
distributions appear to be approximately normal.
(BUGS supplies graphical estimates of the densities,
which also appear normal.) This is consistent with
the theory mentioned earlier.

Table 7.2 Posterior statistics for a and b, for

loglinear model of Example 6.5.

____| a _b

mean 0.264 -0.237

median 0.27 -0.237

st. dev. 0.251 0.067

5th percentile -0.157 -0.348

95th percentile 0.662 -0.129

For anyparticularyear, the value of 2(t) = exp(a + bt)
is between the two dotted lines with 90% probability.
This is enough for many applications.

Suppose, however, that we were interested in the entire
curve. This curve is the set of two-dimensional points
of the form

{ (t,l2Q)) I -- < t <ooJ

For two distinct times t, and t., a pair (a, b) that puts
2(t,) between the lines may put ?(t2 ) outside the dotted
lines. Therefore, the entire curve does not fall between
the two dotted lines with 90% probability. A 90%
region for the entire curve would need to be wider than
the band shown in Figure 7.7. This subtle issue is
revisited for frequentist estimation in Section 7.2.4.5.

7.2.4 Frequentist Estimation with
Loglinear Model

The frequentist method has several variations, which
have been implemented in various software packages.
They are presented here, applied to the example of
Table 7. 1, and the results are compared to each other
and to the Bayesian results.

The mean of b is negative, and 3.5 standard devia-
tions away from the mean. This is very strong evi-
dence of a downward trend. The posterior belief in
a flat or rising trend is only 2.3E-4. (This is OP(-3.5),
from Table C.1.)

The posterior distribution of A is lognormal in any
year. it is shown in Figure 7.7. The median is
plotted as a solid line and the 5th and 95th percen-
tiles are shown as dashed lines. The simple point
estimates

A= x I si

are plotted as dots.

'-U

1.5-

*' 1.0

0.5

* Ianbda hat
-median
--- 5th and 95th %iles

Assume a loglinear model, lnQ(t) = a + bt. Statistical
software packages present their products using some
technical terms, summarized here.

* General linear model: the mean of the observable
random variable is a linear function of unknown
parameters. This is NOT useful for the present
problem. It is mentioned only to point out the
possible confusion with the generalized linear
model below.

* Loglinear model: the logarithm of the mean of the
observable random variable is a linear function of
unknown parameters. This is exactly the model
considered in this section.

* Generalized linear model: a transformation of the
mean of the observable random variable is a linear
function of unknown parameters. This includes the
loglinear model as a special case, when the trans-
formation is chosen to be the logarithm.

7.2.4.1 Point Estimation

Analysis of the loglinear model finds the maximum
likelihood estimates (MLEs) of a and b, based on the
Poisson counts. The discussion below will sometimes
call this the Poisson-maximum-likelihood method.

i
i
I

I

I

nnJ
87 88 89 90 91

Year

Figure 7.7 Posterior distribution of
exponential trend in Example 6.5.

92 93

A, assuming
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This approach is applied here to Example 6.5. No
calculations are given for Example 7.1 because they
would be very similar, differing only by using age
instead of calendar year.

A 100(1 - a)% confidence interval for b is

b ± zl.1 l2se(b) (7.1)

A loglinear model was fitted to the HPCI demand
data of Table 7.1 (Example 6.5). When the years
were coded as 87 through 93, the estimates of a and
b were 20.5305 and -0.2355. The second number
is the slope of InA(t), and the first Is the fitted value of
InA(Q) when t = 0. that is, in the year 1900. (Of
course, no HPCI systems existed in 1900, but the
model does not know that and fits a value.) When,
instead, the years are coded from 0 to 6, the slope is
the same, but the intercept parameter is different,
because now the value t = 0 is the year 1987. The
estimate of a, the intercept, is 0.0389, the fitted value
of InA(t) for 1987.

The fitted value of A(I) is the same, whichever coding
method is used. The fitted values are shown in Fig-
ure 7.8, overlaid on Figure 6.22. Each point and
vertical confidence Interval is based on data from a
single year, but the fitted trend uses all the data.

where b is the estimate, and z, - 2 is the I - af2
quantile of the normal distribution. For example, for a
90% confidence interval, a equals 0.1 and the 0.95
quantile is 1.645. The term se(b) is the corresponding
standard error of b, the estimated standard deviation of

b.

A confidence interval for a is constructed in a similar
way, but is normally much less interesting. Who cares
what value a has? That parameter is just the intercept
at some arbitrarily coded time with t = 0. The parame-
ter a is of interest only because it can be used to con-
struct confidence intervals for InA(t) = a + bt.

7.2.4.3 Test for Presence of Trend

Let two hypotheses be defined by:

f MLE and 90% cod. Interval
ited event rate

1.5

~0.5

w0.0
87 88 89 90 91 92 93

Year GMcsO3W76
Figure 7.8 Frequency of unplanned HPCI demands,
from Figure 6.22, with exponentially decreasing fitted
trend line overlaid.

7.2.4.2 Confidence Intervals for a and b

Ho: A(t) is constant.
HI: A(t) = exp(a + bt), b * 0.

The loglinear model is used as an illustration for the
alternative hypothesis, but any other specific model
could be used, as long as it is not constant.

Note that A(t) = exp(a + bt) is constant if and only if b
is zero. Therefore, the test of Ho is the same as a test
that b =0.

As mentioned in Appendix B, tests for hypotheses
about b are intimately related to confidence intervals for
b. The hypothesis

HO: b =bo

is rejected in favor of the hypothesis

HI: b * bo

With the point estimates a and b, almost all software
will also report standard errors, estimates of the stan-
dard deviations of the estimators. The estimators are
assumed to be approximately normally distributed.
This is a good approximation if the number of observa-
tions in each bin is not too small. (One rule of thumb is
that the count in most bins be at least five. This is
based on the observation that each bin's Poisson
distribution is approximately normal if the mean is five
or more. This rule of thumb is sufficient, but perhaps
unnecessarily conservative.)

at significance level et if and only if the 100(l - i)%
confidence interval does not contain bo. In particular,
the hypothesis

H0 : b =0,

the hypothesis of no trend, is rejected at level 0.10 if the
90% confidence interval for b is entirely on one side of
0. The hypothesis is rejected at level 0.05 if the 95%
confidence interval is entirely on one side of 0, and so
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forth. Most software packages print out a significance
level at which Ho: b = 0 is rejected, the p-value for the
trend.

Similarly, software packages typically print a signifi-
cance level at which the hypothesis a = 0 is rejected.
This should be ignored, because the value of a has no
inherent interest.

We now compare the above test to an earlier one.
Section 6.2.3.2.2 gave tests for the presence of a trend,
illustrated with Example 6.5. The only test it gave with
binned data was the chi-squared test of:

Ho: 4(t) is constant.
HI: a(t) is not constant.

Section 6.2.3.2.2 commented that the test is not very
powerful, because it considers such a broad class of
possibilities as the alternative hypothesis.

In Example 6.5, the chi-squared test rejected the
hypothesis of constant A with p-value 0.009. The
present test of b = 0 rejects this hypothesis with p-
value 0.0004. Although both tests reject Ho, the test
based on the loglinear model finds strongerevidence
against constant A than the chi-squared test did. In
an example with a less clear trend, the test based on
b = 0 might find a statistically significant trend when
the chi-squared test did not.

Suppose that A were not constant, but went up and
down in an irregular way with no persistent increasing
or decreasing trend. The chi-squared test might dis-
cover this, but the test based on b would not discover
the nonconstancy of A - more precisely, the test of
b = 0 might 'discover" the nonconstancy because the
random data might appear to indicate a trend in spite of
the true non-trending pattern of A, but this would only
be an accident. The test to use depends on the alterna-
tives that the analyst regards as credible. A test that
focuses on those alternatives will be more powerful
than a test that is designed for different alternatives.

7.2.4.4 Confidence Interval for A(t) at Fixed t

Most software packages also can find approximate
confidence intervals for nA(t) at particular values of t.
It is worthwhile understanding the approach, because
the software output may require modification to coin-
cide with the analyst's needs. The idea is that the

MLEs a and b are approximately normally distrib-
uted. The software finds an approximate 100(1 - a)%
confidence interval for InA(t) as

a + bt ±i z1-,1,2 x se(a + bN)A (7.2)

where z, - . is as defined earlier, and se(a + bt) is the
standard error, the estimated standard deviation of
a + bt . The standard error depends on the value of t.
It is found by the software - it cannot be found in a
naive way from the standard errors of a and b, because

the MLEs a and b are correlated, not independent.
Expression 7.2 is a confidence interval for InI(t). The
confidence interval for A(t) itself is found by taking the
exponential of the two bounds in Expression 7.2.

Understanding this algebraic form may be useful. For
example, suppose that the software insists on giving
only a 95% confidence interval for A(t), and the analyst
desires a 90% interval instead. The following modifica-
tion can be made. The a corresponding to a 95%
confidence interval is 0.05. First, take logarithms of the
reported upper and lower confidence limits for A(t).
Use these two values, and the form of Expression 7.2,
to find

ZOx7S X se(a + bt).

This follows from the fact that a 95% confidence
interval corresponds to I - ct2 = 0.975. Using Z4975

and Z4ff from a table of the normal distribution, calcu-
late the value of

Zoff X se(a + bt).

From this, calculate the 90% confidence interval for
l1(t),

exp[a + bt ± zo.95 se(a + bt)] . (7.3)

7.2.4.5 Simultaneous Confidence Band at All t

The above confidence interval is for a particular t. For
many values of t, many such confidence intervals could
be calculated. Each is a valid confidence interval, but
they are not simultaneously valid. This is a subtle
point. To appreciate it, recall the interpretation of the
90% confidence interval for A(t) for some particular
time ti:

Pr[ confidence interval for 2(tJ) contains true
occurrence rate at time t, ] = 0.90. (7.4)

Here, the data set is thought of as random. If many data
sets could be generated from the same set of years, each
data set would allow the calculation of a confidence
interval for 2(t1), and 90% of these confidence intervals
would contain the true occurrence rate.
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A similar confidence statement applies to each time.
The simultaneous statement would involve

Pr[ confidence interval for A(t,) contains true
occurrence rate at time t, AND
confidence interval for A(t2) contains true
occurrence rate at time t2 AND
so forth ]. (7.5)

a-

a

I?

2.0 * ~~~~Observed frquncy
-Fitted Irequenicy

1.5 ~ ~ ~~ ---- Band of i vhidId 9D% coni~dence

1.0 ~~~~~barid forfrequency

0.5 *~-

0.0This probability is hard to quantify, because the inter-
vals are all calculated from the same data set, and thus
are correlated. However, Expression 7.5 is certainly
smaller than 0.90, because the event in square brackets
in Expression 7.5 is more restrictive that the event in
brackets in Equation 7.4.

This problem is familiar in the context of least squares
fitting. For example, Neter and Wasserman (1974)
discuss it, and attribute the solution to Working,
Hotelling, and Scheff6. A simple adaptation to the
present setting is sketched by Atwood (1995, App.
B-7). The simultaneous confidence band is obtained by
replacing Zo(0 in Expression 7.3 by

[x0.90()

where the expression in square brackets is the 90th
percentile of a chi-squared distribution with r degrees
of freedom. Here, r is the number of unknown parame-
ters, 2 in this example.

87 88 89 90 91 92 93
Year GC903 579

Figure 7.9 Simultaneous 90% confidence band and
band formed by individual 90% confidence intervals
for Poisson event rate, A(0.

Which should be presented to users, the simultaneous
band or the band of individual confidence intervals? If
the user's interest is in a single time, such as the most
recent time, then clearly the confidence interval at that
time is of greatest interest. If, on the other hand, the
user will look at the entire plot, for example to judge
the existence of a trend, then the simultaneous confi-
dence band is a better indication of the uncertainty in
the estimated line. To satisfy both types of users, the
graph could show the simultaneous confidence band
and the confidence interval at the time of greatest
interest. Figure 7.10 shows such a plot, assuming that
a user would be most interested in the most recent time,
1993.

The simultaneous 90% confidence band is about 30%
wider than the band of 90% confidence intervals,
because

[XO29(r)1f2 = 2.15,
C)

C3
0o
P1

*Observed frequency
- Fted Ireeny

band lor frequency

I)D 9confidence iterval
1.0 for frequencyn1993

0.5 _ _

0.0

which is about 30% larger than

Z4 5_ = 1.645

when r = 2.

Figure 7.9 again uses the HPCI unplanned-demand
data of Example 6.5. The annual estimated event
frequencies are shown, along with the fitted fre-
quency, the simultaneous 90%h confidence band on
the frequency, and the band constructed from the
individual 90% confidence intervals.

Simultaneous confidence bands typically are not
calculated by software packages. They can be calcu-
lated by the user, however, based on the formulas above
and the information produced by the software package.

87 88 89 90 91 92 93
Year GC99 0357 10

Figure 7.10 Simultaneous 90%/6 confidence band for
A(O, and 90% confidence interval for one frequency
of special interest, A(93).

7.2A.6 Alternative Using Least-Squares

Since the model assumes

InA(t) = a + bt,
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one might decide simply to use least-squares software
as follows. First, estimate l based for each bin, based
on only the data for that bin;

Ai =xi/ S

Then fit In A to a + btj by least squares. In principle,
this works. In practice, the method has several twists in
the road, described next.

First, if the observed count is zero in any bin, the MILE A
will be zero for that bin, and the logarithm will be
undefined. This is the case for the final bin of Exam-
ple 7.1. The following ways around this have been
proposed.

* Instead of estimating A, by xls,, use (x, + %)1s,.
This is equivalent to replacing the MLE by the
posterior mean based on the Jeffreys nonin-
formative prior.

* Estimate A, by the posterior mean based on the
constrained noninformative prior. In this case, the
constraint could be that the prior mean equals the
observed overall mean Exl s,, or equals a modifi-
cation to guarantee a positive number, (Ex, +
%)/E,s,.

Such ways tend to reduce the trend slightly, because
they add a constant to all the failure counts, slightly
flattening out any original differences.

and weights s,. Calculate the resulting estimates of A1,

A; = exp(a + bri ) . Then refit the data to a straight

line, using weighted least squares, and weights Alsi .

Repeat this process until the estimates stabilize.

The final point is that least-squares fitting typically
assumes that the data are approximately normally
distributed around the straight line. In the present
context, this means that ln(X/s,) is assumed to be
approximately normally distributed. This assumption
is acceptable, unless the mean count is close to zero.
The variance of the normal distribution is then esti-
mated from the scatter around the fitted line. This
differs from the typical treatment of Poisson data,
where the mean determines the variance.

A 90% confidence interval for A(t) at a particular t is
given by

expld + 6t ± [to.95(d) x se(a + bt)J) (7.6)

where t095(d) is the 95th percentile of Student's t

distribution with d degrees of freedom. The software
will report the value of d. It is the number of bins
minus the number of estimated parameters, 7 - 2 in
Example 65. The form of this equation is very similar
to the form of Equation 7.3, although the estimates and
standard deviation are calculated somewhat differently.

A simultaneous 90% confidence band has the same
form, but the multiplier tO95(d) is replaced by

The second point that must be considered is that the
variance of X1Is, is not constant. Ordinary least-squares
fitting has some optimality properties if the variance is
constant. Otherwise, it is more efficient to use weighted
least squares, with weights inversely proportional to the
variances of the observations. Many statistical software
packages perform weighted least squares estimation.

For simplicity, this issue will be explained for the case

with no zero counts, and with InA, estimated by In( A; )

= ln(x/s,). The variance of ln(X/s,) is approximately the
relative variance of Xils,, defined as
var(XIsd1E2 (X 1 s,). This is IIE(X1) = ll(4,s) if X, has a
Poisson(A2s) distribution.

Unfortunately, the variances depend on the A, values,
which are unknown. Therefore, the following
iteratively reweighted least-squares method can be
used. Begin by assuming that A is constant, and fit
ln(x5 Is) to a straight line with weighted least squares,

2Fo o(r. d)]J',

where F0 59jr, d) is the 90th percentile of the Fdistribu-
tion with randddegrees of freedom. This modification
of Equation 7.6 is analogous to that for Equation 7.3 to
get a simultaneous confidence band.

7.2.5 Comparison of Methods

The three frequentist methods are compared here.
Following that comparison, the Bayesian method is
compared to the frequentist methods, first for the
current example and then in general.

Figure 7.1 1, from Atwood (1995), shows results from
three frequentist analyses of the data of Table 7.1.
As can be seen in the figure, the fitted lines are
similar for all three analyses. The unweighted-least-
squares method gives an unnecessarily wide confi-
dence band. This shows the inefficiency of un-
weighted least squares when the variance is not
constant. The Poisson-maximum-likelihood ap-

i

I
a

iI,
I
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proach has a slightly narrower confidence band than
does the weighted-least-squares approach. The
reason is that the least-squares approach introduces
an additional parameter that must be estimated, the
variance around the line. The pure Poisson ap-
proach calculates the variance from the fitted mean.
The price of estimating an extra parameter is a larger
multiplier, [2Fog9(2, 5)]* = 2.75 instead of

[XO.90(2)] = 2.15.

One other reason for the difference between the two
plots on the right of the figure might be that they use
different estimators of the variance. In this example,
however, the scatter around the line agrees almost
perfectly with the scatter predicted by the Poisson
assumptions, so the two calculations of the variance
agree. This is coincidence, but it eliminates a possible
distraction in comparing the two methods.

In summary, all three calculations are valid, and yield
similar fitted lines. The method of unweighted least
squares uses the data in a somewhat inefficient way,
however, and therefore produces an unrealistically wide
confidence band. The method of iteratively reweighted
least squares provides a narrower confidence band, and
the loglinear model provides the narrowest band of all.
None of the calculations is exact: the least-squares
method treats In(countltime) as approximately normal,
and the Poisson-maximum-likelihood method treats the
parameter estimators as approximately normal, How-
ever, the analysis based on the Poisson-maximum-
likelihood method is preferable (if the Poisson assump-
tion is correct), because it gives the tightest confidence

band, and reweighted least squares is second best. It
may be that extra sources of variation, or
"overdispersion," have entered the data, variation
beyond that caused by the Poisson distribution. If so,
reweighted least squares would be best and the Poisson-
maximum-likelihood method would produce an unreal-
istically narrow band.

Now the frequentist methods are compared with the
Bayesian method, first for the particular example, and
then in general.

The corresponding figure from the Bayesian analysis
is Figure 7.7. Careful examination of the figures
shows the following:

* The posterior median in Figure 7.7 is close to
the fitted line (the MLE) in Figure 7.9, which is
the middle panel of Figure 7.11.

* The 90% credible band in Figure 7.7 shows a
band that is valid for any one time, but not
simultaneously for all time. It is close to the
inner band in Figure 7.9, which also is valid for
any one time but not simultaneously. These
bands are somewhat narrower than the simulta-
neous bands of Figure 7.11.

The following comments apply in general, not just to
the example:

* Frequentist estimation relies on approximate
normality of the estimators, and therefore does not
work well with data having few observed events.
Bayesian estimation obtains normal posteriors

6,
6,

Poisson maximum likelihood

I

00

Reweighted least
squares with hn(X/s)

0

-0 ~ --. .. . . . .~~~~
1987 1989 1991 1993

Year
1987 1989 1991 1993

Year
1987 1989 1991 1993

Year GC99 03576

Figure 7.11 Fitted Poisson event occurrence rate and simultaneous 90% confidence band, based on three ways
of fitting the HPCI unplanned-demands data.
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when the data set is large, but does not fail entirely
when the data set is small - it merely obtains a
different, non-normal, posterior.

Most frequentist software packages for analyzing
trends include calculations for investigating the
goodness of fit of the model, as will be seen in
Section 7.2.6. Current Bayesian software may
neglect this issue of model validation.

7.2.6 Model Validation

The three assumptions for a nonhomogeneous Poisson
process are given at the beginning of Section 7.2.2.
The first assumption is difficult to test from data. The
second, dealing with common cause failures, has been
addressed in Sections 2.2.4 and 6.2.3.3. The third
assumption is that event counts in disjoint intervals are
independent. This was addressed using a test of serial
correlation in Section 6.2.3.4 when l is constant, but
the analogue is too complicated to consider here. When
the data are collected into bins, as assumed here, serial
dependence can result in an unusually high or low event
count in a single bin. This can be discovered by
goodness-of-fit tests, considered below.

The final assumption made when fitting a trend model
is the form of the model. Methods to examine the
goodness of fit will be illustrated with the loglinear
model, following the precedent of the rest of this
section.

72.6.1 Graphical Check for Goodness of Fit

The natural graphical check is to compare the observed
values to the fitted line. This is illustrated by Fig-
ure 7.8. In that figure, the 90% confidence interval for
each year overlaps the fitted trend line. Because no
year deviates strongly from the overall trend, the data
appear consistent with the assumption of an exponential
trend. Even if one 90% interval had failed to overlap
the fitted trend line, one would not necessarily conclude
that the exponential-trend assumption is violated. The
reason for not being concerned about a single failure to
overlap is that some 90% confidence intervals are
expected to miss the true value. In the long run, as
many as 10% of the intervals may fail to contain the
true value. In the short run, one miss in seven is 14%,
so one miss in the graph is not alarming.

The above discussion is written from a statistical
viewpoint. An engineering viewpoint may reveal more.
For example, if the estimates for the individual bins
(plotted as dots in this section) drop very suddenly, it

may be that the mechanism has changed. If the time
bins correspond to plant age, the frequent early events
may correspond to a learning period. Such conjectured
causes should be investigated, and confirmed or re-
jected based on more detailed study of the events. As
is typical, a statistical analysis only puts up road signs,
pointing to interesting subjects for engineering investi-
gations.

The statistical analysis is illustrated with an example
here. The examples given earlier in this chapter could
be used, but Example 2.1 is more interesting when
investigating lack of fit.

Example 2.1 stated that a particular plant had 34
unplanned reactor trips while at power in 1987-1995.
Table 7.3 gives the dates of those initiating events.
This data set is a portion of the database used by
Polosk! et al. (1 999a). This particular plant had its
initial criticality on 1/3/87 and its commercial start on
5/2/87.

Table 7.3 Dates of Initiating events at one
plant, 1987-1995. (from Example 2.1)

D1I21/87 04103/87 06M17187 11/08/87 02107/89 07/1519W
D1/22/87 04112187 06/21/87 03/09/88 02122/89 07/17/9'
D2/27/87 04/14/87 06/22/87 10/14/88 03/14/89 10/129

W1 1/87 04/21/87 07/09/87 1/30/88 10/09/89 11/05/95
)3/13(87 04/22/87 08/04/87 01/16/89 06/03/91
XY31/87 05M24/87 11/07/87 020/89 07112/92

These events were grouped by calendar year.
Because reactor trips occur only when the reactor is
at power, the relevant norrnalizing time is critical
time, given in Table 7.4 as critical years.

The now-farmiliar picture is given in Figure 7.12. This
figure shows that the first observed value, for 1987,
is well above the fitted line, and the second observed
value, for 1988, is well below the fitted line. In fact,
the assumed model seems to try to force data with
an L-shaped trend into a smooth exponentially
decreasing trend.

It appears that the plant had a learning period, during
which initiating events were quite frequent, followed
by a period with a much smaller frequency. Exami-
nation of Table 7.4 shows that the learning period
seems to have lasted until the summer of 1987 (three
events in June, one each in July and August, and
only infrequent events after that). It is not certain
that the explanation is "leaming" in the usual sense,
but It is clear that the event frequency dropped
suddenly about six months after the initial criticality.
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Table 7.4 Initiating events and reactor-
critical-years.

Calendar Initiating Reactor-critical-
year events years

1987 19 0.70936
1988 3 0.75172
1989 6 0.79482
1990 0 0.89596

1991 1 0.81529

1992 3 0.75123
1993 0 0.99696
1994 0 0.82735
1995 2 0.83760

0

Re

4U -

45 r MLE and 90% conf. Interal
- Fitted event rate

30

25

20

1 5

1 0

0

The variance of a Poisson random variable equals the
mean. Therefore, the standardized residual is

In the context of binned data, these are also sometimes
called the Pearson residuals or the chi-squared
residuals, because the sum of the squared Pearson
residuals is equal to the Pearson chi-squared statistic.
A plot of the these residuals against time may be
helpful.

Figure 7.13 plots the standardized residuals against
calendar year, forthe example of Tables 7.3 and 7.4.
This plot shows severe lack of fit. The standardized
residuals should be approximately normal (0,1), and
so should be mostly between -2 and 2. A value
greater than 3.5 is just too large. The plot also
shows something that may not be evident from
Figure 7.12. The largest value corresponds to 1995,
not 1987. This reflects the fact that in Figure 7.12,
the 1995 confidence interval is farthest from the fitted
line, in relative terms.

4.0

3.0

02.0

X1.0

p0.0
.-1.0v

-2.0 .

-3.0
87 88 89 90 91 92 93 94 95

Year ecu o35Ta
Figure 7.13 Standardized residuals, also called the
Pearson chi-squared residuals, for data of
Figure 7.12.

An informative plot for this example is the simple
cumulative plot, introduced in Chapter 6 (see Fig-
ure 6.23). This plot would normally be used to check
on whether the event occurrence rate is constant. The
slope is the event rate, and a nonconstant slope corre-
sponds to a departure from a straight line.

The cumulative event count is plotted against event
date in Figure 7.14. In this example, the plot shows
a clear nonconstant slope, and moreover, the form of
the nonconstancy is shown: a very large rate (slope)
during the first year, followed by a somewhat smaller
rate, and then a very small rate in the last years.

87 88 89 90 91 92 93 94 95
Year GM O35r7

Figure 7.12 Annual frequency of initiating events,
with fitted exponentially decreasing A(Q and
simultaneous 90% confidence band on AQ).

Incidentally, a plot based on Bayesian calculations
would show the same general information as Figure
7.12. Replace the MWE fitted line by the posterior
median, and replace each confidence interval by a
credible interval for A based on a noninformative prior
and one year's data. For an example of such a Bayesian
plot, see Figure 7.18 in Section 7.4.3.

In ordinary least-squares fitting, it is standard to plot
residuals, where each residual is defined as the ob-
served value minus the fitted value. Under the assumed
model, the residuals do not all have the same variance,
so sometimes the standardized residuals are plotted,
where a standardized residual is the residual divided by
its theoretical standard deviation.

In the present context, the ith count, X,, is assumed to be
Poisson with mean seAft,). The ith residual, denoted ro
is

r; = xi - sA(t) -
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Figure 7.14 Cumulative count of initiating events, for
data of Table 7.3 (Example 2.1).

Two comments must be made. First, this figure re-
quires the unbinned data, which may not be available in
every problem. Second, the use of calendar time
instead of critical time on the horizontal axis may
distort the figure somewhat.

If there is lack of fit to the exponential trend model, the
analyst should try to identify the causes of the lack of
fit. One frequent cause of lack of fit is systematic
variation - the assumed form of the model is incorrect.
In the examples of this section, systematic variation
means that InA(Q) is not of the form a + bt. This was
revealed by Figures 7.12 and 7.14. Another possible
cause is extra-Poisson variance, additional sources of
variation that are not accounted for in the Poisson
model. Figure 7.13 may show this. The residual for
1995 is surprisingly large. Table 7.3 and Figure 7.14
both show that two events occurred in relatively quick
succession in 1995, and that three events occurred in
quick succession in 1992. If any of these events were
dependent on each other, such dependence would
exaggerate the normal random variation in the counts
from year to year.

One must be careful about how to correct lack of fit. In
this example, it is reasonable to delete the early history
of the plant, the part corresponding to the learning
period. This would flatten the fitted line for the rest of
Figure 7.12, making it lower in 1988 and higher in
1995. Thus, dropping early data would make the late
data fit better. One would have to perform the analysis

to know whether this proposed solution will completely
remove the lack of fit in the late years or only reduce it.

The above approach does not consist of throwing away
data. Instead, it divides the data into two relatively
homogeneous sets, which never should have been
pooled. The set after the end of the learning period can
be analyzed as described above. The other set, during
the learning period, can also be analyzed. If it is thrown
away, that is only because no one chooses to analyze it.

If dividing the data into homogeneous pieces does not
correct the lack of fit, another option is to construct a
more complex model. For example, l could be mod-
eled as a function of more variables than just 1. Or one
could postulate a random count with larger variance
than the Poisson variance. Such topics are beyond the
scope of this handbook.

7.2.6.2 Statistical Test for Goodness of Fit

7.2.6.2.1 Test Based on Poisson Maximum
Likelihood

When Poisson maximum likelihood is used to fit the
trend to the data, some software packages give two
measures of goodness of fit, the Pearson chi-squared
statistic and the deviance. The Pearson chi-squared
statistic, denoted X2, is the sum of squares of the Pear-
son residuals. The deviance is based on the theory of
generalized linear models. It is defined as

D = 2Zx,(n(xj)- In[s, A(t,) 1)

For more details, see Atwood (1995) or books on the
generalized linear model.

The assumed model is

HO: A() = a + bt

for some (unknown) constants a and b. If this model is
correct, and if the number of observations per bin is
large, both X2 and D have approximately a chi-squared
distribution, with degrees of freedom equal to the
number of bins minus the number of unknown parame-
ters. In fact, the two statistics are asymptotically equal.
For small samples, on the other hand, the two are not
necessarily nearly equal to each other, nor is their
distribution approximately chi-squared. The distribu-
tion of X2 typically approaches the chi-square distribu-
tion faster than the distribution of D does.
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These two statistics can be used to test whether Ho is
true. Four situations can arise in practice.

of freedom. This is very strong evidence against the
loglinear model.

* Both X2 and D are in the upper tail of the chi-
squared distribution, larger than, say, the 95th
percentile. This is evidence of lack of fit to the
model, H.. Report the p-value based on X2. For
example, if X2 is at the 98th percentile of the chi-
squared distribution, report a p-value of 0.02.
Investigate the data to try to discover the reason for
the lack of fit.

* Both X2 and D are in the middle of the chi-squared
distribution, say between the 5th and 95th percen-
tiles. Then the model appears to fit adequately.

* Both X2 and D are in the lower tail of the chi-
squared distribution. This is an indication of
overfit, with too complex a model to bejustified by
the data. Although such a situation will probably
not arise with the two-parameter models of this
chapter, it can arise when the model contains many
factors, such as component age, manufacturer,
environment, etc.

* X2 and D are so different from each other that they
give conflicting conclusions. That is, one statistic
is in the upper tail of the chi-squared distribution
and the other is in the lower tail, or one is in a tail
and the other is in the middle. This can indicate
one of two possibilities. (1) The data set may be
too small to allow an accurate assessment of the
goodness of fit. The problem often can be reme-
died by pooling the data to some extent. For
example, it is possible to fit a loglinear model
using nine one-year bins from Table 7.4. If X2 and
D conflict, try pooling the data into two-year bins,
and so forth. (2) Ho may be false in a way that one
statistic detects and the other does not. X2 and D
are asymptotically equal only if H, is true, not if H,
is false. In this case, if it is really important to
decide whether Ho should be rejected, one could
try simulating data from the fitted model, and
seeing what fraction of the simulated data sets
produce a simulated X2 or D as large as actually
observed. That fraction would approximate the
exact p-value, without relying on the asymptotic
chi-squared approximation.

The results of these statistical tests are consistent with
the conclusions based on the graphs.

7.2.6.2.2 Test Based on Weighted Least-Squares
Fit

Consider fitting a function of the form

y = a + bt

based on observations y, at times ti. In the present
context, y equals ln(x, Is.). In Section 7.2.4.6, the
weighted sum of squares

2 wijy, - (a + bti)]2

was minimized, with the weights equal to the inverses
of the estimated variances of Y. = ln(Xls,/). If the model
assumptions are correct, and if the Yes are approxi-
mately normally distributed, the weighted sum of
squares has approximately a chi-squared distribution.
The degrees of freedom d is the number of bins minus
the number of unknown parameters. The degrees of
freedom are 5 in the HPCI-demand example and 7 in
the initiating-events example. (Purists will note that the
chi-squared distribution applies if the weights are fixed
in advance, not derived from the random data. This
slight departure from theory is commonly ignored.)

If the weighted sum of squares is in the right tail of the
chi-squared distribution, such as beyond the 95th
percentile, this is evidence of lack of fit. As mentioned
above, one common cause of lack of fit is systematic
variation-the assumed form of the model is incorrect.
In the examples of this section, that means that InWt) is
not of the form a + bt. Another possible cause is extra-
Poisson variance, additional sources of variation that
are not accounted for in the Poisson model. To gain
insight as to which contributors to lack of fit seem to be
present, examine plots similar to Figures 7.12 through
7.14.

For the HPCI unplanned demand data in Table 7.1,
the loglinear model seems to fit well. The values of
XI and Dare 4.90 and 5.12, respectively. These are
both in the middle of a chi-squared distribution. The
degrees of freedom, 5, equals the number of bins, 7,
minus the number of unknown parameters, a and b.

For the initiating-event data of Table 7.4, )M and D
are 28.93 and 24.17. These are both far out in the
right tail of a chi-squared distribution with 7 degrees

7.3 Unbinned Poisson Data

Example 6.6 and Table 7.3 are typical examples of the
type of data considered here. That is, the exact event
times are used. The corresponding summary tables of
counts, given in Tables 7.1 and 7.4, are not used.

In principle, the exact event times contain more infor-
mation than the summaries of counts in bins. The
counts can be calculated from the exact event times, but
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the exact event times cannot be retrieved from the count
totals. Therefore, in principle, better procedures can be
squeezed out of the exact event times. However,
software based on binned event counts is more widely
available. Also, little information is lost by grouping
the event times into bins, unless the bins are very large
and coarse. Therefore, use of binned data is usually the
most practical method for the data analyst.

7.3.1 Bayesian Analysis

When the exact event times are used, it is difficult to
write out the likelihood. In principle, one must write
the likelihood of each event time, conditional on the
previous times, and finally the probability of no events
after the final observed event until the end of the
observation period. [See Section 3.3 of Cox and Lewis
(1966).I Formulas are given for several cases by
Atwood (1992), but they are not intuitive.

Binning the data, as in Section 7.2, is much simpler.
Moreover, the bins may be made as numerous and small
as the analyst desires. Many of the bins would then
have event counts of zero, but that is allowed. This
approach would capture virtually all of the information
in the data. In practice there is little advantage in
constructing very fine bins, but the analyst who was
intent of squeezing every last bit of information from
the data could do it.

7.3.2 Frequentist Analysis

Frequentist analysis is also simpler when the data are
binned, although Atwood (1992) works out the formu-
las for the MLEs and approximate confidence intervals
for several cases that use the exact event times. The
unified notation in that article does not make the
expression immediately obvious for any particular
model. Typically, the MLEs must be found through
numerical iteration rather than directly from algebraic
formulas.

The simplest approach is to bin the data and use the
methods of Section 7.2. Remember that the bins must
not be too fine; a conservative rule of thumb says that
most of the bins should have expected event counts of
five or more.

The exception - the only relatively easy case with
unbinned data - is the power-law model when the
process is observed from time zero. Typically, the data
collection begins at some time in the middle of opera-
tion, but in those rare cases when the data collection
starts at time zero and ends at some time r, the MLEs of

the parameters in the two parameterizations of the
power-law model are:

b= n l 2 n(r I td),
i=l

r / n and

A= nblr' -

Here n is the number of events, t, is the time of the ith
event, and r is the final time in the data-observation
period. These formulas can be obtained by translation
into the notation of Section 7.2.2.1 of formulas in Bain
and Engelhardt (1991, Chap. 9, Eq. 13) or Atwood
(1992, Section 6.1). Those references also consider
confidence intervals and goodness-of-fit tests.

7.4 Binomial Data

This section parallels Section 7.2 closely. Only the
formulas are different, because the section deals with
failures on demand instead of events in time. Because
of the similarity to Section 7.2, some of the topics are
given a cursory treatment here. These topics are com-
pletely analogous to the material in Section 7.2, where
a fuller description can be found.

7A.1 Examples

Example 6.10 can be used. This example consisted of
63 demands for the HPCI system during 7years, and 12
failures. It is convenient to combine the data into bins,
such as calendar months, calendar years, etc. Such
binning summarizes the data in a compact way. For
goodness-of-fit tests, discussed in Section 7.4.6, bin-
ning is not merely convenient - it is required. If the
bins are too fine (too few failures and successes ex-
pected in each bin) then the goodness-of-fit statistics X2

and D will be inconsistent with each other, and neither
will have an approximate chi-squared distribution under
Ho. On the other hand, the bins must not be too coarse.
As in Section 7.2, denote the midpoint of the ith bin by
t,. The bins must be small enough so that the expected
number of failures in the bin can be approximated by
the number of demands in the bin times p(t).

The data from Example 6.10 are summarized by
calendar year in Table 6.14, which is repeated here as
Table 7.5.

In this example the bins correspond to calendar years.
Other examples could be constructed in which the bins
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correspond to ages, so that p would be modeled as a
function of age rather than calendar time.

Table 7.5 HPCI failures on demand, by year
(from Example 6.10).

AQ), the logit model for p(t) is a model in the class of
generalized linear models.

A frequently used relation is that

y = logitlp(t)J E In( p(t)l[I - p(t)] )

is equivalent to
Calendar year I Failures I Demands

1987 4 16

1988 2 10
1989 1 7
1990 3 13
1991 2 9
1992 0 6
1993 0 2

p(t) = logit-1(y~) se7I(I + el), (7.7)

denoting the inverse function of the logit by logir'.
Figure 7.15 shows logit[p(t)J as a function of t, and
Figure 7.16 shows p(t) itself as a function of t. Notice
that in Figure 7.16 the value of p(t) stays between 0.0
and 1.0, as it should.

7A.2 Model

7A.2.1 General Model

The model is the same as that in Sections 2.3.1 and 6.3,
except now the probability p depends on time, t. Thus,
the model assumptions are:

1. The outcome of a demand at time t is a failure with
some probabilityp(t), and a success with probabil-
ity l - p(t).

2. Occurrences of failures on different demands are
statistically independent.

V_ -2

8 -3

-2 -1 0 1 2 3 4
t GM 0357 t

Figure 7.15 Plot of In( p(t)l[I - p(t)] ) = a + bt, with
a = -2 and three values of b.

The number of demands and their times are assumed to
be fixed, and the outcome on each demand is assumed
to be random.

7.4±2 Logit Model

By far the most commonly used functional form for p(t)
is the logit model. In this model the logit transform of
p(t) is a function of unknown parameters. Fitting such
a model to data is sometimes called logistic regression.
The model that will be used in this section is

logitrp(t)] = a + bt,

where the logit function is defined as

logit(p) = In[ pl(1 - p) I .

This function was also encountered in Section 6.3.2.5.2
and in Appendix A.7.9, where the logistic-normal
distribution is introduced. Like the loglinear model for

1.c
0.9
0.8
0.7

~R0.6.

0.4
0.3
0.2

/b 4 1.0

ab-".0[._ _

'-2 -1 0 1 2 3 4
I GM Os 1t2

Figure 7.16 Plot of p(t) as a function of t, correspond-
ing to Figure 7.15.

The parameters have simple interpretations: a is the
value of the logit of p when t = 0, and b is the slope of
the logit of p.
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7.4.2.3 Loglinear Model

If p is small, then logit(p) is close to In(p), and the logit
model could be approximated by

In[p(t)] = a + bt.

This is a loglinear model, just as in Section 7.2.2.2.
Software programs for analyzing a generalized linear
model always include the logit model as one special
case, and software programs for logistic regression are
based on the logit model. However, if for some reason
the analyst has software that only allows for the log-
transformation, not the logit-transformation, that
software is probably adequate as long as p is small.

7.43 Bayesian Estimation with Logit
Model

The large-sample theory mentioned in Section 7.2.3
applies here as well. As the data set becomes large
(many demands and failures) the form of the likelihood
function approaches the form of a normal density for
the two variables a and b. Therefore, with large data
sets the conjugate prior is normal: if a and b are given
a normal prior distribution, the posterior will be approx-
imately normal, with very good approximation as the
data set becomes large. The corresponding
noninformative prior for a and b is the limiting case as
the variance approaches infinity, which is a constant
density.

For the work here, it will be assumed that a computer
program produces a sample from the posterior distribu-
tion. The theory sketched above will then lead us to the
conclusions that the posterior distributions not only
appear normal, they really are normal, or very close to
normal.

A convenient, and free, software package is BUGS
(1995), Rayesian inference Using gibbs 5ampling.
This was also used in Section 7.2.3, where it is de-
scribed in more detail. Example 6.10 is analyzed here
using the Windows version, WinBUGS, assuming a
logit model.

Using the data of Example 6.10 (Table 7.5), BUGS
was used to model logitpM) = a + bi, for i from I to 7.
Then X(i) was modeled as having a binomial(nQ),
p(A)) distribution, where n(M) is the number of de-
mands in year L Finally, a and b were given very
diffuse prior normal distributions.

Figure 7.17 shows the BUGS script that was used to
analyze the data.

model

for (i in l:m) 4
p[i] <- exp(a + i*b)/(l + exp(a+i*b))
x(i] - dbin(p[i], n[i])

I
a - dnorm(O.0, 0.0001)
b - dnorm(0.0, 0.0001)

Figure 7.17 BUGS script for analyzing data of
Example 6.10.

This uses the Equation 7.7 for expressing logit(p) in
terms of the normally distributed quantity a + lb.
Note the way BUGS happens to parameterize
distributions, putting p before n in the list of binomial
parameters, and parameterizing the normal distribu-
tion in terms of the precision r= /1i. The reason for
using precision is explained in Section 6.6.1.2.1. A
precision of 0.0001 in the script corresponds to a
standard deviation of 100. That gives a very diffuse
distribution.

The script was executed with four separate starting
values of a and b, generating four chains of values,
each 10,000 elements long. The first 500 elements
of each chain were discarded, and the remaining
38,000 elements were used to estimate the posterior
distributions. Table 7.6 summarizes the posterior
distributions for a and b. When interpreting these
summaries, be aware that a and b are not indepen-
dently distributed.

Table 7.6 Posterior statistics for a and b, for
loglinear model of Example 6.5.

a b

mean -0.8838 -0.2085

median -0.8654 -0.204

st. dev. 0.6477 0.1961

5th percentile -1.981 -0.5395

95th percentile 0.1471 0.1063

li

The table shows that the mean and median are
nearly equal in each case, and the 5th and 95th
percentiles are approximately 1.645 standard devia-
tions from the mean. This approximation is poorest
for a, with -0.8838 + 1.645 x 0.6477 = 0.182, some-
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what larger than the reported 95th percentile. That
is, the distributions appear to be approximately
normal, as anticipated by the theory mentioned
earlier, but the approximation is not perfect in the
tails.

The mean of b is negative, but not strongly so, only
1.06 standard deviations below 0. Treating b as
normally distributed, a table of the normal distribution
shows that b is negative with probability 0.86 and
positive with probability 0.14. Therefore, we are not
really sure that the trend is downward.

The posterior distribution of p is approximately
logistic-normal in any year. It is shown in Figure
7.18. The median is plotted as a solid line and the
5th and 95th percentiles are shown as dashed lines.
This is analogous to Figure 7.7 for A.

7.4.4 Frequentist Estimation with
Logit Model

7.4A.4 Point Estimation

The model is analyzed by finding the MLEs of a and b,
based on binomial counts. The discussion below will
sometimes call this the binorial-maximum-likelihood
method. The software finds the estimates by numerical
iteration.

When this model is fitted to the data of Table 7.5, a
fitted trend is found, which can be overlaid on
Figure 6.38. It is not shown here, but will be dis-
played with a simultaneous confidence band in
Section 7.4.4.4.

7.4.4.2 Confidence Intervals for a and b

I

87 88 89 90 91 92 93

Figure 7.18 Posterior trend line for p with 90%
credible band, for data of Table 7.5. In addition,
annual estimates and 90% credible intervals are
shown, based on constrained noninformative prior.

Figure 7.7 also plotted the MLEs, based on each
year's data, as dots. To illustrate the graphical
possibilities, Figure 7.18 is constructed somewhat
differently. The total data set has 12 failures in 63
demands. Therefore we constructed the constrained
noninformative prior with mean 12.63. Interpolation
of Table C.8 shows that this prior is approximately
beta(0.324, 1.376). For each year of data, this prior
was updated to obtain the posterior for that year; the
90% credible interval was plotted as a vertical line,
with a dot showing the posterior mean.

All the intervals overlap the fitted trend line. This is
graphical evidence that the logit model fits the data
well. (Many other models might also fit this sparse
data set well.)

As in Section 7.2.4.2, almost all software for estimating
a and b reports standard errors, estimates of the stan-
dard deviations of the maximum likelihood estimators.
The estimators are assumed to be approximately
normally distributed, which is valid unless the sample
size is small.

Therefore, as in Section 7.2.4.2, a 100(i - a)% confi-
dence interval for b is

b zi z t2se(b)

where b is the estimate, and z, - is the I - ae2 quan-
tile of the normal distribution. The term se(b) is the
standard error of b, the estimated standard deviation of
the estimator.

The confidence interval for a is similar.

7A.4.3 Test for Presence of Trend

Consider the two hypotheses defined by:

Ho: p(t) is constant.
HI:p(t) = logit-'(a + bt), b i 0.

Note, the null hypothesis Ho is true if p(t) = logit-'(a +
bt) and b is zero. Therefore, with this choice of an
alternative hypothesis, the test of H. is the same as a
test that b = 0, the test given above based on a confi-
dence interval for b.

As in Section 7.2.4.2, the hypothesis

Ho: b = 0,
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the hypothesis of no trend, is rejected at level 0. 10 if the
90% confidence interval for b is entirely on one side of
0. The hypothesis is rejected at level 0.05 if the 95%
confidence interval is entirely on one side of 0, and so
forth. Most software packages print out a significance
level at which the hypothesis that b = 0 is rejected, the
p-value for the trend.

This is different from the tests of Chapter 6. Section
6.3.3.2.2 uses a different alternative hypothesis,

HI: p(t) is not constant.

It also uses a different test, the chi-squared test. Section
6.3.3.2.2 commented that the test is not very powerful
against the alternative of a trend in p, because it consid-
ers such a broad class of possibilities as the alternative
hypothesis.

Consider Example 6.10, with the HPCI failures
during unplanned demands, as summarized in
Table 7.5. In Section 6.3.3.2.2, the chi-squared test
rejected the hypothesis of constant p with p-value
0.77. That is, the test found no evidence of noncon-
stant p. The present test of b = 0 rejects this hypo-
thesis with p-value 0.30. That is, this test still does
not reject the hypothesis of constant p. However, it
notices the slightly falling values of p in Figure 6.38,
and therefore sees somewhat stronger evidence
against constant p than the chi-squared test did.

Incidentally, the test based on b and the Wilcoxon-
Mann-Whitney test for trend (Section 6.3.3.2.2) reach
very similar conclusions.

7.4A.4 Confidence Intervals and Confidence
Bands

Confidence intervals for p(t) at a particular i and
simultaneous confidence bands valid for all t both are
based on the approximate normality of the MLEs a
and b. The software finds an approximate
100(1 - a)% confidence interval for logitlp(t)] as

confidence bounds for logitlp(t)], that is, for a + bt,
then

logit-'(L) = eL(1 + et) and
logir'(U) = eUI(1 + eU) (7.9)

are the corresponding confidence bounds for p(t).
Manipulation of Equation 7.8 allows the analyst to
convert from one degree of confidence to another, say
from 90% to 99%, by using different percentiles of the
normal distribution and the single standard error found
by the software.

As discussed in Section 7.2.4.5, a confidence interval is
valid at one t, and the band constructed from the
individual confidence intervals is not simultaneously
valid for all t. A simultaneous 100(1 - a)% confidence
band for logit[p(t)] is found by replacing zi - in
Equation 7.8 by

[ta/(r)] 2

with r equal to the number of estimated parameters, 2 in
Equation 7.8. This is exactly the value that was used in
Section 7.2.4.5. The only difference is that there the
confidence band was for In.4(t) and here it is for
logit[p(t)]. The confidence band for A(t) was found by
inverting the logarithm function, that is, by taking an
exponential. The confidence band for p(t) is found by
inverting the logit function: if L and U are now used to
denote the lower and upper edges of the simultaneous
confidence band for logitfp(t)J at some t, the corre-
sponding points on the confidence band for p(t) are
given by Equation 7.9.

Figure 7.19 shows the data from Table 7.5, plotted
as in Figure 6.38 but now with the fitted trend line
and the simultaneous 90% confidence band overlaid.
The confidence band can easily contain a horizontal
line; this is consistent with the fact that the hypothe-
sis of constant p cannot be rejected.

7.4.4.5 Alternative Using Least-Squares Software

The model assumes that logit[p(t)] = a + bl. Therefore,
as in Section 7.2.4.6, one might decide simply to use
least-squares software as follows. First, estimate p for
each bin, based on only the data for that bin:

Pi = Xjl ; .

Then fit logit( p) to a + bt, by least squares. The same

problems that were mentioned in Section 7.2.4.6 must
be addressed here.

a + bt ± IzI-,12 x se(a + bt)) (7.8)

where, as before, z, - . is the 100(1 - af2) percentile
of the standard normal distribution, and se(a + bt) is the
standard error, the estimated standard deviation of
a + bt . The standard error depends on the value of t,

and accounts for the fact that the MLEs a and b are
statistically correlated, not independent. The confi-
dence interval for p(t) itself is found by inverting the
logit function. If L and U are the lower and upper

I:
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Figure 7.19 Annual estimates of p, fitted trend line
and 90% confidence band for p(o, for data of Table
7.5.

First, if any observed failure count, x1, equals either 0 or
the demand count n,, the MLE P will be 0.0 or 1.0 for

that bin, and the logit will be undefined. In the data of
Table 7.5, this happens for the final two years. The
following ways around this have been proposed,
analogues of proposals in Section 7.2.4.6:

1. Instead of estimating p, by x/ni, use (x; + V%)/
(n8 + 1). This is equivalent to replacing the
MLE by the posterior mean based on the
Jeffreys noninformative prior.

2. Estimate p, by the posterior mean based on the
constrained noninformative prior. In this case,
the constraint could be that the prior mean
equals the observed overall mean x,/IEn1, or
equals a modification to guarantee a positive
number, (2txi + ½)/(TEn, + 1).

Such ways tend to reduce the trend slightly, because
they add a constant to all the failure and demand counts,
slightly flattening out any original differences.

The second point that must be considered is that the
variance of the estimator of p is not constant. There-
fore, the following iteratively reweighted least-squares
method can be used. Assume that p in the ith bin is
estimated by (Xi + a)/(n, + at + A. If the simple MLE
is used, then irand pare both zero. If method I above
is used, then a = ' and 8 = . If method 2 above is
used, then a and f must be found from Table C.8.
Neter and Wasserman (1974, Eq. 9.51) state that the
asymptotic variance of logit(MLE of pj) is

1I[ni pi(I - pi)].

The method given here is a generalization when grand
plare not both zero, setting the weight w, to the inverse
of the asymptotic variance of the estimator.

Begin by assuming that p is constant, and let Pi be

some simple estimate of p, the same for all i. Fit
logitI(x,+a)/(n1+6) toastraight line with weighted least
squares, and weights

(nP, + a)2[n, (I - Pi) + ,612

nip,(l- P,)(ni + a+ f)2

Calculate the resulting estimates of pi,

pi = logirl(a + bt,).

Recalculate the weights with these estimates, and refit
the data to a straight line using weighted least squares.
Repeat this process until the estimates stabilize.

The third and final point is that least-squares fitting
typically assumes that the data are approximately
normally distributed around the straight line. In the
present context, this means that logit( Pi ) is assumed to
be approximately normally distributed. This assump-
tion is acceptable if the number of failures in each bin
is not close to zero or to the number of demands. The
variance of the normal distribution is then estimated
from the scatter around the fitted line. This differs from
typical treatment of binomial data, where the mean
determines the variance.

A 90% confidence interval for p(t) at a particular t is
given by

logitf'(a + bt ± t(,95(d) x se(a + bt)] ) (7.10)

where t095(d) is the 95th percentile of Student's t
distribution with d degrees of freedom, just as with A(t)
in Section 7.2.4.6. The software will report the value of
d. It is the number of bins minus the number of esti-
mated parameters, 7 - 2 in the example of Table 7.5.
The form of this equation is very similar to other
equations in Sections 7.2 and 7.4, although the esti-
mates and standard deviation are calculated somewhat
differently.

A simultaneous 90% confidence band has the same
form, but the multiplier t095(d) is replaced by

[2F.ga(r. d)1]

where F,0 (r, d) is the 90th percentile of the Fdistribu-
tion with r and d degrees of freedom.
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7A.5 Comparison of Bayesian and
Frequentist Estimation with
Logit Model

When the Bayesian analysis uses very diffuse priors, the
conclusions of the two analyses will be numerically
similar.

The posterior median in Figure 7.18 is very close to
the fitted line (the MLE) in Figure 7.19. The 90%
credible band in Figure 7.18 is narrower than the
simultaneous confidence band in Figure 7.19, be-
cause the simultaneous confidence band is based on
an inequality. It would be close to the frequentist
bounds that are valid at any one t, if such a graph
were calculated. The vertical lines in Figure 7.18,
representing credible intervals forp based on individ-
ual years of data, are generally close to the confi-
dence intervals in Figure 7.19, except for the years
with little data, 1992 and 1993. For those two years,
the confidence intervals are quite wide, but the
credible intervals are shorter, under the influence of
the prior mean of 0.19.

Frequentist estimation relies on approximate normality
of the estimators, and therefore does not work well with
data having few observed events. Bayesian estimation
obtains normal posteriors when the data set is large, but
does not fail entirely when the data set is small - it
merely obtains a different, non-normal, posterior.

Most frequentist software packages for analyzing trends
include calculations for investigating the goodness offit
of the model, as will be seen in Section 7.4.6. Current
Bayesian software may neglect this issue of model
validation.

7.4.6 Model Validation

The two assumptions for a time-dependent binomial
process are given at the beginning of Section 7.4.2.
The first assumption is difficult to test from data. The
other assumption is that outcomes on distinct demands
are independent. One kind of dependence is serial
dependence. Positive serial dependence means that
failures tend to be followed by more failures, for
example if a failure is misdiagnosed the first time, or if
a single cause results in a number of failures before it is
corrected. Negative serial dependence means that
failures tend to be followed by successes, for example
if the major cause of failure is wearout, at which time a
new component is installed (without any failures from
installation problems).

Positive serial dependence results in failures tending to
cluster together, with relatively long gaps between
failures. When the data are collected into bins, this can
translate into unusually high or low event counts in
individual bins. This can be discovered by goodness-
of-fit tests, considered below. However, it is impos-
sible to decide, from the failure counts alone, whether
the outcomes are serially correlated or whether p is
going up and down. The cause can be determined only
by an investigation to discover the failure mechanisms.

A negative serial dependence results in less-than-
expected variation in the event counts. A goodness-of-
fit test will report a p-value near 1.0, indicating surpris-
ingly good fit, too good to be believable.

The final assumption made when fitting a trend model
is the form of the model. Goodness-of-fit tests are
designed for testing this assumption. In fact, a
goodness-of-fit test is an all-purpose test for the various
assumptions, although it is not good at deciding which
assumption may be violated.

7.4.6.1 Graphical Check for Goodness of Fit

The natural graphical check is to compare the observed
values to the fitted line.

Figure 7.18 and 7.19 each show such a plot for the
data of Table 7.5 (Example 6. 10). Either figure may
be used. In Figure 7.18, each credible interval
overlaps the fitted trend line, and in Figure 7.19, the
90% confidence interval for each year overlaps the
fitted trend line. Because no year deviates strongly
from the overall trend, the data appear consistent
with the assumption of the logit model.

The discussion at the end of Section 7.2.6.1 applies
here as well, concerning interpretation of a few inter-
vals' failure to overlap the fitted line, and concerning
the need for an engineering assessment of any strange
patterns.

As with the loglinear model for 4(t), the residuals and
standardized residuals can be plotted forp(t). Software
may report these as the "raw residuals" and the "Pear-
son chi-squared residuals," respectively.

In the present context, the ith count, Xi, is assumed to be
binomial with mean np(t,). The ith residual, denoted r,
is

r = xi - nip(ti).
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The variance of a binomial(n, p) random variable
equals np(I - p). Therefore, the standardized residual
is

7.4.6.2.2 Test Based on Weighted
Least-Squares Fit

Consider fitting a function of the form

ri / VniP(t.)[I - ~t)
y= a+ bt

These are also sometimes called the Pearson residuals
or chi-squared residuals. A plot of the standardized
residuals against time may be helpful, as in Sec-
tion 7.2.6. 1.

Also, a simple cumulative plot may be informative, as
it was in Section 7.2.6.1. In the present example, the
cumulative plot is given in Figure 6.39, which shows no
pattern of interest. In other data sets, such a plot might
not only show nonconstancy in p, but it might suggest
the form of the nonconstancy.

The cumulative plot shows failures per demand, reveal-
ing changes in p as a function of the demand count.
However, if the rate of demands is changing, as it is in
the present example, the plot can give a distorted
picture if p is regarded as a function of calendar time.
When p is constant, the issue of distortion is irrelevant
- a constant p is constant, whether it is regarded as a
function of demand count or of calendar time.

Just as in Section 7.2, lack of fit may be caused by
systematic variation or by extra-binomial variance,
additional sources of variation that are not accounted
for in the binomial model. See the discussion in Sec-
tion 7.2.6. 1.

7.4.6.2 Statistical Test for Goodness of Fit

7A.6.2.1 Test Based on Binomial Maximum
Likelihood

Just as in Section 7.2, software packages that use
binomial maximum likelihood may give two measures
of goodness of fit, the Pearson chi-squared statistic,
denoted X2, and the deviance, denoted D. The discus-
sion in Section 7.2.6.2.1 applies here as well.

For the HPCI failure data in Table 7.5, the logit
model seems to fit well. The values of XM and D are
2.12 and 2.91, respectively. These are both in the
middle of a chi-squared distribution with five degrees
of freedom. The degrees of freedom, five, equals the
number of bins, seven, minus the number of un-
known parameters, a and b. The p-value for lack of
fit, based on Xe, is 0.84, indicating very good fit.

based on observations y, at times t,. In the present
context, y equals logit(x/n1). As in Section 7.2, if the
model assumptions are correct, and if the Yis are ap-
proximately normally distributed, the weighted sum of
squares has approximately a chi-squared distribution.
The degrees of freedom d is the number of bins minus
the number of unknown parameters. The number of
degrees of freedom is 5 in the HPCI-failure example.
The discussion in Section 7.2.6.2.2 applies here as well.

7.5 Discussion

This section ties together some specific methods given
in Chapters 6 and 7, showing the unifying formulations.
Readers who are happy simply using the earlier recipes
may skip this section.

7.5.1 Generalized Linear Models

Some software packages that implement the loglinear
and logit models do so in the framework of the general-
ized linear model. Such models are described in a
highly mathematical way by McCullagh and Nelder
(1989), and in an introductory way in Appendix B-2 of
Atwood (1995). This model has several elements, a
random component, a systematic component, and a
link, a function relating the random and the systematic
components.

* The random component consists of some independ-
ent observations Y., ... , Y,,. This is thought of as
an m-dimensional vector, Y. The examples of this
chapter have been the normalized Poisson event
count, Y, = X/s1 , and the fraction of binomial
failures on demand Y, = X/n1 .

* The systematic component is an m-dimensional
vector V, with the ith element ;i7 related to explana-
tory variables, and to unknown parameters in a
linear way. The example of this chapter has been
q, = a + bth, where a and b are unknown parameters
and the explanatory variable t, is the calendar time
or age for Y,.

* The link is a function g with

orj = g[E(Y,)]. (7.11)
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In this chapter, the links have been the log function
for Poisson data and the logit function for binomial
data.

Thus the two examples of this chapter have been the
Poisson example, with

ln[E(X1/s,)] = ln[A(t,)] = a + bt,,

and the binomial example, with

logit[E(XIn,)J = logit(p(t,)J = a + bti.

This is the terminology used by many statistical soft-
ware packages. The analyst must specify the distribu-
tion for the random component, the form of the system-
atic component in terms of the unknown parameters and
the explanatory variables, and the link function.

Other software packages use a slight variant of this
terminology. This is a generalized linear model with an
offset, replacing Equation 7.11 by

g[E(Y,)J = n + offseti . (7.12)

In the Poisson example, let Yj be the Poisson count
itself, X1, not the normalized count X/s,. Then the
expected value of Y, is sA(t,), with InA(tQ) modeled as a
+ Ft,. To satisfy Equation 7.12, let the offset term be
In(s1). Then we have:

g[E(YiJ = ln[E(X,)]
= ln[sAt,)]
= ln[A(t,)] + In(s,)
= a + bt, + In(s1)
= 7, + offset; .

In this version of the model, the software package
requires the analyst to specify the distribution of the
random component, the form of the systematic compo-
nent, the link function, and the offset The disadvantage
of this formulation is the extra term that must be speci-
fied, the offset. The advantage is that the distribution of
Xi is Poisson, whereas the distribution of Xjs, is hard to
specify because it does not have a standard name.

Much more elaborate models can be constructed in this
general framework, by adding more explanatory vari-
ables. For example, both calendar time and age of the
individual component could be treated together in one
model as explanatory variables. The explanatory
variables do not even have to be continuous. Manufac-
turer, system. and plant could be used as discrete
explanatory variables. The possibilities are limited only

by the availability of data. However, such models go
beyond the limited scope of this handbook.

7.5.2 The Many Appearances of the
Chi-Squared Test

In Chapter 6, the Pearson chi-squared test was used to
test whether A or p was constant. In Chapter 7, A or p
is assumed to be nonconstant, yet the chi-squared test is
used anyway. Also, the chi-squared test was used in
Section 6.6.2.3.2 to test whether durations had an
assumed distributional form.

To see the unity in this apparent diversity, note first that
in every case the Pearson chi-squared statistic has the
form

XI = 2, ( observed, - expected, )2 / expected,.

To clarify possible confusion one must think about the
hypothesis being tested. The big general theorem states
that when H. is true, X2 has approximately a chi-squared
distribution, and the degrees of freedom is the number
of unknown parameters under H, minus the number of
unknown parameters under Ho. The approximation is
valid when the degrees of freedom stays constant and
the size of the data set becomes large. This is now
applied to the specific cases in this handbook.

Consider first Poisson data with event rate A. In
Chapter 6, the null and alternative hypotheses were:

Ho: A is constant.
H,: 1 is not constant.

The data were partitioned into c cells. These cells may
have corresponded to different sources of data, such as
different plants, or they may have resulted from binning
the data, for example, corresponding to c years. If Ho
is true there is one unknown parameter, the single value
of A. If, instead, H, is true, there are c unknown param-
eters, the values of A in the different cells. Therefore,
by the big general theorem, when Ho is true X2 is
approximately chi-squared with c - I degrees of
freedom. This is the result stated in Section 6.2.3.1.2.

Consider now the corresponding case with binomial
data. The data fall into a 2x4 contingency table. The
value J corresponds to the J sources of data or J bins,
and the two rows correspond to failures and successes.
The null and alternative hypotheses were:

Ho: p is constant
H,: p is not constant.
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If Ho is true, there is one unknown parameter, p. If,
instead, H. is true there are J unknown parameters,
corresponding to the J bins or data sources. Therefore,
the big general theorem says that the degrees of free-
dom for X2 is J - 1, just as stated in Section 6.3.3.1.2.

Consider now the setting of Section 7.2, with l(r)
modeled as a + bt. The time axis was divided into c
bins. To test the goodness of fit, the hypotheses were:

Ho: Aft) = a + b:,
H.: A for each bin is arbitrary.

Under Ho there are two unknown parameters, a and b.
Under Hi, the number of unknown parameters is the
number of bins, since each can correspond to a different
A. Therefore, the big general theorem says that the
degrees of freedom, when testing Ho, is c - 2. This
agrees with Section 7.2.6.2. Recall that the chi-squared
distribution is approximate, for large data sets. The
deviance was used as a backup check, to help ensure
that the data set was large enough.

The treatment of p in Section 7.4.6.2 is exactly parallel
to that of 1.

Finally, the chi-square test was used in Section 6.6.2.3.2
to test whether durations follow a distribution of an
assumed form. A duration was denoted as T. To be
specific, consider a case in which the assumed distribu-
tion of T had two unknown parameters. Possibilities
include the lognormal(p, o) distribution and the
gammna(, A. The hypotheses in this setting were:

Ho: T has a distribution of the assumed form.
Ha: T has some other distribution.

The data were partitioned into c bins, so that every
observed value ofT fell into one bin. Only the counts
in the bins were used, not the individual duration times.
If Ho is true, there are two unknown parameters Cu and
a, or et and 4, or whatever the two parameters of the
assumed distribution are).

If H, is true, there are c - I parameters. These parame-
ters are Pr(T falls in bin 1), Pr(T falls in bin 2), etc.
There are c bins, but only c - I parameters, because the
probabilities must sum to 1.0. Thus, any c - I parame-
ters determine the final one.

The big general theorem should say that the degrees of
freedom are (c - 1) - 2. However, a subtle complica-
tion arises. An assumption of the big theorem is that
the two unknown parameters of the distribution are
estimated using the maximum likelihood estimated

based on the bin counts. In this setting, however, it is
far easier to estimate those parameters from the raw
data. Therefore, as stated in Section 6.6.2.3.2, the
degrees of freedom fall somewhere between c - 3 and
c- 1.

To summarize this section, the Pearson chi-squared test
has many applications. To avoid confusion, the analyst
must clearly specify the null hypothesis being tested and
the alternative hypothesis.

7.5.3 Nonparametric Estimators of A(t)

The nonparametric estimators of a density in Sec-
tion 6.6.3 can also be used to estimate a time-dependent
event-occurrence rate A(t). In each case, the data
consist of a number of times, durations in Section 6.6.3
and event times in the present case. The only difference
is the scale: a density integrates to 1.0, and an occur-
rence rate does not. To use an estimator from Section
6.6.3 in the occurrence-rate setting, multiply the esti-
mate by the total number of observed events. This is
the correct scale correction.

The estimators in Section 6.6.3.1.1 showed a problem
at 0, estimating a positive density to the left of zero
even though a duration time cannot be negative. This
problem was corrected by reflecting the data around 0,
and initially using a data set that contained both the true
data and the mirror images (a value at -t for every
value of t). Such a problem also occurs with estimation
of A(t). If data are collected in a time period from r. to
r,, simple kernel estimates will have this problem at
both ends. To correct this problem, reflect the data at
each end, so that artificial data have been constructed
beyond r, on the left and beyond r, on the right.
Construct the density estimate based on this augmented
data set. Then truncate the density - set it to zero
outside the observation interval, and multiply it by 3 so
that it again integrates to 1.0. Finally, convert it from
a density estimate to an estimate of the Poisson intensity
by multiplying it by the number of observed events.
When interpreting the resulting graphed function, be
aware that the estimate will be flat at the two ends, by
the way the estimate was constructed. The slope of the
line at the two ends cannot be used to draw inferences
about whether the Poisson intensity is changing.

This method was applied to the data of Table 7.3
(Example 2.1), unplanned scrams at a new reactor.
The normal kernel was used. The 34 event dates
were converted to consecutive days, and the stan-
dard deviation was 874 days. The formula

h = 1.06 an '4
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resulted in h = 457 days. This is only a very prelimi-
nary suggested value for two reasons: a was
estimated, not known, and the true shape of the
intensity function is not close to normal. Because it
is wise to undersmooth rather than oversmooth, a
value h = 400 days was used.

The estimated Poisson intensity function, /I(O, is
shown in Figure 7.20. The calculations were per-
formed in terms of calendar days, and converted to
reactor-critical-years by assuming 0.82 critical years
per calendar year. This is the average of the values
shown in the right column of Table 7.4.
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Figure 7.20 Estimate of AO) using standard normal
kernel, with bandwidth h = 400.

The curve in Figure 7.20 can be compared with the
exponential curve in Figure 7.12. The curve using
the kernel estimator follows the ups and downs of the
data more closely than does the simple exponential
curve. However, the kemel-estimator curve at the
beginning of 1987 is only 17.4, substantially below
the simple maximum likelihood estimate of 26.8,
based on the 1987 data only. Two factors contribute
to this. First, the bandwidth of h = 400 days is
apparently too wide. The leaming period at the plant
lasted less than one year, so a smaller bandwidth

would better reflect the rapid learning that was taking
place. Second, the conversion from calendar time to
reactor-critical-years used the average value for nine
years, 0.82. In fact, the first calendar year had only
0.71 critical years. Therefore, the estimate during
the first year should be about 15% larger than
shown.

Figure 7.21 shows the kernel estimatorwith a smaller
bandwidth, h = 200 days. It follows the rapid drop in
the scram frequency at the beginning of the plant's
history much more closely. It also is more sensitive
to small, perhaps random, clusters of events later in
the plant's history. The constant conversion rate of
0.82 reactor-critical-years per calendar year has
been used, with the same effect as in the previous
figure.
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Figure 7.21 Estimate of A() using standard normal
kernel, with bandwidth h = 200.

This example has illustrated both some advantages and
some difficulties of nonparametric estimation of a
Poisson intensity function. The same advantages and
difficulties were seen for nonparametric density estima-
tion. See Section 6.6.3 for more discussion of these
issues.
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